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Abstract. Using the transfer matrix method for calculating the band stmcture, transmission 
and reflection coefficients of photonic systems, we present a method for calculating photonic 
dispersion surfaces. We then show how dispersion surfaces are excellent tools in the search for 
photonic insulatom by applying the method to a simple system. We also explore the potential 
of metals for inmrporation in photonic strnctures. 

1. Introduction 

In one dimension, the idea of a photonic band gap has been exploited for some time. In such 
a material there is a range of frequencies (the photonic band gap or PBG) for which photons 
cannot propagate. Within the gap, the wave vector is complex and the wave field decays 
exponentially, and in the limit of a thick sample all the incident energy is reflected. In one 
dimension, a periodic dielectric multilayer or Bragg stack fulfills this task, being totally 
reflecting for certain frequencies of radiation normally incident upon it. Unfortunately, this 
structure only h i  a  band gap in one direction; as we move away from normal incidence 
the reflectivity falls rapidly beyond a modest angle. 

Yablonovitch [I] made the first attempts to improve on this, investigating dielectric 
structures which were periodic in all three dimensions. These were fabricated on millimetre 
length scales, and were probed using microwave techniques. He managed to produce a full 
photonic insulator, that is a structure which, for a range of frequencies, does not permit 
propagation in any direction. It was hoped that the band structure could be scaled up to 
optical frequencies by scaling the structure down to micrometre length scales. Unfortunately, 
this proved too difficult for current fabrication techniques, motivating a search for other 
structures which are simpler~ to make but which still exhibit a complete photonic band gap. 
Such a structure could have applications in producing an almost fully closed lasing cavity 
for a semiconductor laser, the PEG material being used to make highly reflecting cavity 
walls with very low losses. This provides control over the spontaneous leakage that limits 
conventional laser thresholds. Alternatively, if non-linear media were used, a structure with 
a band gap, and not necessarily a complete one, could be used to make an optical switch, 
the position of the band gap being controlled by the intensity of the radiation incident upon 
it [Z]. 

The method which we use to calculate photonic band strnctures is based on the 
calculation of a transfer matrix and is explained in some detail elsewhere [4]. Our first task 
is to take Maxwell's equations and convert them to a form discretized on an orthorhombic 
real space lattice of points defined by T = ha + pb + uc (where A,  p, U are integers and 
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a, b, c are the unit lattice vectors). Our resulting formulae are transfer equations. That is 
to say, if we know the E and N fields at all points within a plane z = z‘, then we can 
calculate the fields in the next plane, z = 2’ + c. Repeating this we can find the fields 
throughout space. 

A J Ward er a1 

In matrix form this can be written 

F(r + c) = ?(r, T’)F(T‘) 
T‘ 

where F(T) = , T and r’ lie within a plane. 

Let our photonic crystal be periodic on a lattice defined by the orthogonal primitive 
lattice vectors a‘, b’? c‘. (Notice these are not the same as the vectors a, b, c which 
define the discretization mesh.) Thus &(r) = E(T + R) and ~ ( r )  = p ( r  + R) where 
R = ora‘ + pb‘ + y d  (or, p, y are integers). Thus a’, b’, c‘ define the unit cell for our 
crystal. 

We can write down Bloch’s law for the electromagnetic fields in our unit cell: 

F(r +a’) = exp(ii,a’)F(r) (2) 
F(r + b’) = exp(ik,b’)F(r) (3) 
F(r + c’) = exp(ik,c’)F(r) (4) 

If we specify k, and ky, then equations (2) and (3) set the boundary conditions on the 
fields in the x and y directions. By iterating our transfer equations through the unit cell we 
can also write 

(5) 

where 9 has the form of a product of N transfer matrices, N being the number of kayers 
of discretization cells in one crystal unit cell. Comparing (4) and (5) we see that T has 
eigenvalues of the form exp(ik,c’). So this is our method: we calculate 9 for a given 
frequency, U. We then find the eigenvalues o f f  which give us all the kz values for that 
o. Repeating this for different frequencies gives us the band structure, kz(o). 

Notice that we calculate all the values of k for a given U. This is in contrast to most 
other methods [5,6,7] used for calculating photonic band structures which expand the wave 
field as a series of plane waves and as a result find the o values for a given k. However, 
this method makes working at a fixed energy somewhat difficult. We shall see that by fixing 
the energy and searching for all the allowed k values, we can develop useful techniques to 
help in the search for a photonic insulator. 

Incidentally, we can also use the transfer mahix to calculate the reflection and 
transmission coefficients of our system by integrating the fields through the unit cell and 
using multiple scattering formulae to add cells together. This is also explained in detail 
elsewhere [3, 41. 

F(r + c’) = ?F(r) 

2. The strategy 

By working at a fixed energy (fixed U )  we can find all the allowed (real) k, values for 
a given kx, k,. If this is repeated for different kz, ky we can map out all the allowed b 
vectors for a given energy for either photon polarization. The tips of these vectors describe 
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a constant energy surface in k space. This is called a dispersion surface. The Fermi surface 
is a familiar example. 

The dispersion surfaces for photons in a homogeneous, isotropic dielectric (‘fiee’ 
photons) are two coincident spheres, one for each polarization, the radii of which are 
proportional t o o  (k = ofilc). If we turn on the effect of a periodic dielectric function we 
find that the free photon spheres are distorted as they approach a Brillouin zone boundary, 
and in general the degeneracy between polarizations is lost. Figure 1 shows a schematic 
diagram of what we have in mind. The first Brillouin zone for a system with cubic symmetry 
is a cube. The dispersion surface for a single polarization for an energy with a band gap in 
some direction will be a distorted sphere. but with necks forming where the surface comes 
close to touching the edge of the Brillouin zone to leave forbidden regions where there are 
no allowed k vectors. 

Forbidden Region 

Figure 1. A sketch of a dispersion surface. Forbidden regions appear when the surface touches 
the edge of the Brillouin Lone. 

The rules controlling distortion of a photonic dispersion surface~are the same as those 
which control the effect of a periodic potential on a Fermi surface. That is, the surface is 
distorted towards the Brillouin zone edge, the degree of distortion being controlled by the 
strength of the dielectric modulation. If the dispersion surface touches the Brillouin zone 
boundary then they must intersect at right angles. 

Figure 2.shows the effect of a periodic potential on a series of free-photon spheres of 
increasing radius. Contour 1 is for an energy just below a photonic gap. Contour 2 is at 
an energy within the gap; notice that there are no states at the centres of the faces of the 
Brillouin zone. It is not a complete gap, however, as there are still some allowed states in 
the corners of the zone. Contour 3 is at energy just above the gap. Notice that pockets 
of allowed states in the second Brillouin zone have now appeared. 

We can use plots of photonic dispersion surfaces to look for systems with interesting 
band structures. These surfaces can tell us many things-whether a given gap is complete 
or whether there remain allowed states, the size of these allowed regions and their location 
in k space. 

By changing our periodic structure and observing the effect this has on the size and 
position of the allowed regions in k space, it is possible to search more efficiently for 
photonic insulators. 
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Figure 2. Three dispersion surfaces for a system 
with a cubic lattice. Contow I is for an energy 
just below the gap, contow 2 is within the gap 
and contour 3 is jus1 above the gap. 

Figure 3. Diagram of the log pile smcture. 

3. A specific example 

We now present the results of calculations of dispersion surfaces for a particularly simple 
cubic 3D periodic structure-the simple cubic version of the log pile structure. The PCC 
version of this structure was proved to have a band gap for certain refractive indices by 
Ho et ai 191 using o versus k plots. We use this system to demonstrate the power of 
the dispersion surface approach. This structure consists of layers of parallel dielectric rods, 
separated by a distance a, alternate layers being rotated by 90" (see figure 3). These 
calculations were made using the code PHOTON [8] which is available from the Computer 
Physics Communications library at Queen's University, Belfast. 

We chose rods with a rectangular cross section and a filling fraction of 35%. That is, 
the height of each rod is 0 . 5 ~  and the rod width 0.35~.  The length a was 0.317 microns 
but this is arbitrary and only affects the overall energy scale. 

Dispersion surfaces were plotted for different values of the refractive index n. We 
plotted the wave vector in units such that the first Brillouin zone runs from -1  < k, < +1, 
-1  < ky < +1, - 1  < k, < +l.  For each plot we chose an energy within the first band 
gap. The dispersion surfaces are projected down onto the k,, ky plane. As we were lwking 
for a true photonic insulator, no attempt was made to distinguish between the polarizations 
and our diagrams in fact show the projections of both surfaces superimposed. Figure 4(a) 
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(b) Dispersion Surface 
Log Pile Structure. n=3.6 

0 

c 
0.7 

' 0.4 5 
A 0.0 

g -0.3 
D - 
D 3 4.6 

-0.9 
-0.9 -0.6 -0.3 0.0 0.4 0.7 

wave vector (x-component) 

(d) Dispersion Surface 
Log Pile Structure. n=6.0 

~ 

0 

$ . O . 6 L t .  , , , , , , , , ,.J 
-0.9 

-0.9 -0.6 Q.3 0.0 0.4 0.7 
Wave Vector (x-component) 

Figure 4. Projections of dispersion surfaces for the log pile suuctm for different values of the 
refractive index of the rods: (a) n = 2.0. (b) n = 3.6. (c) n = 5.0. (d) n = 6.0. 

shows the dispersion surface for refractive index n = 2. It is basically spherical (a circle in 
projection). At the centre of the~k,, ky plane the surfaces touch the kt =!= 1 Brillouin zone 
boundary leaving a large forbidden region (the empty circle in the centre of &e figure). 
Similarly at k x ~ =  &l and ky = f l  the surface forms necks to touch the boundary normally 
leaving forbidden regions in the centres of the k,, kc and ky ,  k, planes. Notice that the 
forbidden regions at k, = &l, ky = f l  are a little larger than at kz = i l .  

~ ~ Figure 4(b) gives the dispersion surfaces for n = 3.6 (typical of a semiconductor). The 
central forbidden region is now much larger, allowed states being forced into the comers 
of the k,, ky plane. By the time n~has  increased to 5 (figure 4(c)), the forbidden circle has 

~ ~ expanded to the edges of the Brillouin zone.  the allowed regions are much smaller and 
have now become disconnected. When n = 6 (figure 4(d)) the allowed regions have shrunk 
further and now only occupy the corners of the plane. By the time n = 6.33 the allowed 
regions have vanished altogether and the gap is complete. 

Obviously the dispersion surface gives at a glance a picture of the whole of k space 
at a single frequency and is therefore invaluable in the search for a photonic insulator. In 
particular, it enables attention to be focussed on the parts of k space where some dispersion 
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surface remains, thus suggesting what further steps may be needed to push the structure 
into the insulating phase. 

4. Photonic mirrors-better mirrors? 

Finally we turned our attention to another simple system, but this time one which includes 
a metal. We attempted to answer the question: which is a better reflector (at optical 
frequenciesta bulk metal surface, or a series of thin metal planes? 

The idea is that we can perhaps incorporate metals into photonic structures to give 
enhanced dielectric contrast. The problem is that metals absorb light and therefore we want 
to explore whether there is any way of reducing this absorption and making the metallic 
structures more efficient. 

To model the metal we used a frequency-dependent dielectric constant of the form 
&(U) = 1 - [w:/w(w + iy)] and chose parameters w = 15.1 eV, y = 0.27 eV (typical for 
a metal such as aluminium). Figure 5(a) shows the calculated reflection coefficient for the 
bulk metal. Below the plasma frequency the reflectivity is high but less than unity because 
of losses due to the finite electrical conductivity. 

Figures 5(b) and 5(c) show the band structure and reflection coefficient for a stack of 
256 metal planes, the filler between the planes having a refractive index of 1.5. The plane 
thickness was chosen to be 2.5 nm, to be comparable to the skin depth, and the plane 
spacing, which simply controls the overall energy scale, was 0.35 microns. Note the peak 
in the reflectivity corresponds with the position of the photonic band gap. Figure 5(e) 
compares the bulk reflectivity and the reflectivity of the layered system in the region of 
the peak. The reflectivity for the layered system is higher over a fairly narrow range of  
frequencies, having a maximum at around 98% compared with 95% for the bulk at that 
point. 

The asymmetry of the reflectivity peak is due to the redistribution of the electromagnetic 
field at the top and the bottom of the gap. In each case the photon wave function is 
a standing wave. The metal acts like a repulsive potential so at the bottom of the gap 
(the lowest energy state), the nodes of the wave function lie on top of the metal planes 
(l$I(z)I2 - sin2(zz/a) where a is the plane spacing). This means that the overlap between 
the metal and the electromagnetic field is minimized and the absorption is small. The 
reflectivity is correspondingly high. At the top of the gap the reverse is true. The nodes of 
the wave function lie between the planes (l$I(z)I2 - cos2(zz/a)) and the overlap between 
the metal and the field is maximized. Therefore the absorption is greater and the reflectivity 
is correspondingly lower. 

To what extent is the gap for this system complete? Figure 5(d) shows the dispersion 
surface for the metal layers. Since the system is only periodic in the z direction (the 
stacking direction) there are only Brillouin zone boundaries in the k, direction. So no 
forbidden regions open along the kz, kr directions. Figure 5(d) shows a small forbidden 
region but the gap is by no means complete. 

In answer to our question then, yes, a stack of layers can have a larger reflectivity than 
the bulk but only for a limited range in frequency and k space. 

5. Conclusions 

We have presented the dispersion surface as a useful tool in searching for a photonic 
insulator. We then applied our transfer matrix method to two systems and confirmed that 
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Figure 5. (a) Reflectance of bulk metal, @) band swctue, (c) reflection coefficient and (d) 
dispersion surface for a slack of planes planes. (e) Comparison of the reflectance of the bulk 
metal and the layered system. 
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the simple cubic log pile structure does indeed have a complete gap (albeit for a refractive 
index n > 6.33 which is somewhat artificial). We are limited, however, by the geometry 
which can be studied. An FCC log pile structure would have a complete gap for a much 
lower refractive index contrast but our present methods can only handle systems with cubic 
primitive unit cells. In the future we hope to extend our method to include systems with 
non-orthogonal unit cells. 

We also showed that a series of metal planes can have a higher reflectivity than bulk 
metal if only for a limited range of frequencies and angIes of incidence. We have shown 
that the inherent absorption of the metal need not necessarily present a problem because 
of the redistribution of the photon wavefunction at the band edges. In the future it should 
be possible to include metals in the design of fully three-dimensional photonic systems to 
obtain an effective enhancement in the refractive index contrast. 
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